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Almtraet~Potsson brackets are presented for smgle-prcssure ideal multiphase hydrodynamic and 
electrohydrodynamic models of fluids and plasmas. Stationary mnltiphase flows are shown to be 
crmcal points of the sum of the energy and additional conservation laws assoctated with the kernels 
of these Potsson brackets. The constraint of a common pressure for the phases is shown to preclude 
Lyapunov stability for these stationary flows. 

1. INTRODUCTION 

Multiphase flow involves interpenetration of various material species. Hydrodynamic models 
describing such systems raise many questions, such as well posedness and stability, which 
can be addressed in the context of a Hamiltonian formulation. Such a formulation is the 
purpose of this paper. 

Practical models of multiphase flow are typically derived by taking averages with 
respect to time, space, or statistically over microscopic domains to obtain macroscopic fluid 
descriptions. This averaging procedure is a rather subtle process, which has been given 
detailed description in Ishii (1975) and Nigmatulin (1979), resulting in a by now standard, 
single-pressure fluid description of multiphase flow. 

An open problem about the basic single-pressure fluid model without dissipation 
concerns its ill posedness: the model is not hyperbolic; in one dimension the system has 
complex characteristic eigenvalues, see e.g. Gidaspow et  a l .  (1973). For a linear system, 
this would indicate ill posedness of the Cauchy problem, whose solutions would not depend 
continuously on the initial data for arbitrarily high wavenumber, as discussed in Lax (1957). 
For nonlinear systems of the same type as the single-pressure inviscid model, complex 
characteristic eigenvalues indicate nonexistence of a bounded integral of the solution, as 
shown in Lax (1980). 

The problem of ill posedness has been avoided in practice by introducing either viscous 
dissipation as in Arai (1980) and Stewart (1979), or additional pressures arising from surface 
tension as in Ramshaw & Trapp (1978), bubble inertia as in Bedford & Drumheller (1978), 
or other interfaciai pressure jumps determined phenomenologically, see e.g. Ransom & 
Hicks (1984). Additional models and methods in two-phase flow are reviewed in Stewart 
& Wendroff (1984). 

Despite the recent progress mentioned above, the theoretical situation concerning ill 
posedness of the basic nondissipative model is still unsatisfactory and its mathematical 
structure needs clarification. In this paper, we provide a Hmniltonian formalism for the 
basic single-pressure model and analyze within this context how Lyapunov stability is 
prevented, in comparison with single-species compressible fluids and multispecies, multi- 
pressure models. 

Multiphase barotropic and adiabatic flows of uncharged materials at a single, common 
pressure are considered in sections 2 and 3, respectively. These standard theories are extended 
to a multiphase plasma of charged interpenetrating materials in section 4. In each case, we 
present a Hamiltonian formulation and identify conservation laws associated with existence 
of a nontrivial kernel of the corresponding Poisson bracket. 
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For single-phase flows (Holm et al. 1983) and for charged multiflmd flows with multiple 
pressures (Holm 1984; Holm et al. 1985), the Hamiltonian formulation leads to sufhcmnt 
criteria for Lyapunov stability in the neighborhood of steady solutions. However, because 
multiphase flows take place at a single, common pressure, the imphcit dependence of the 
pressure on the entire set of macroscopic densities prevents the establishment of even 
hneanzed Lyapunov stability, as is illustrated in section 5 for multiphase barotroplc flow 
m two damenslons. This result is consistent with the ill posedness of the multlphase equanons 
in one dimension and its consequent sensiUve dependence to high wavenumber perturbanons 
m initial conditmns discussed in Lax (1957; 1980), Ransom & Hmks (1984), and Stewart 
& Wendroff (1984). 

Thus, the Hamil toman procedure of stability analysis provides a framework m which 
it becomes clear that stability Is prevented by the constraant of a common pressure for each 
phase. This Hamiltonian formulation also provides a useful springboard for amendments 
and generalizations. In the companmn paper (Holm & Kupershmidt 1986) we extend the 
Hamiltonian formulation presented here for the standard model to derive a new, well-posed 
hyperbolic multlphase model whose steady equilibria are Lyapunov stable under certain 
conditmns. 

2 M U L T I P H A S E  B A R O T R O P I C  H Y D R O D Y N A M I C S  

A local description of ideal, barotropic, multiphase flow is given in terms of the following 
variables as functions of space coordinates x with components x,, i = 1, 2, ..., n and 
time t: 

0 r the volume fraction of material s in a unit volume; s = 1, 2, ..., N, 
o '  : 1 

the microscopic density of material s. 
the macroscopic density of material s; ~ '  = p '0 s (no sum). 
the velocity of material s. 
the pressure within material s, which is taken to be the same for all materials; 
P~ = P for all s, m the standard, single-pressure theories. 
the internal energy per unit mass of material s; e '  = es(p0 is the equation of 
state, so that p '  = ps(p) and de s = ( P / ( p 0 0 d p  ' for the barotropic, single- 
pressure case 

The N constraints 

p s 

V s 

p,  

e s 

r = 1  
= 1, P ' ( p ' )  = P  for a l l s  = 1 , 2 , . . . , N  

impose implicit dependences 

P : o= : 

ps 
smce p' = p'(P) = 0-- 7, where p ' (P )  can be considered as given functions. As an illustration, 

consider the case of twospecles,  s = 1,2. Then, w i t h 0  t = 0 , 0  2 = 1 -  0, 

( = o p t ( ; ' ) ,  = = 1 ( ; , ) ,  
P 

which implies that P = P(  ~ t, ~ 2) = p (  {~ ,}), and likewise, 0 s = Off[ p '  }). Consequently, 
we consider P, 0 s to be given functions of [ ~ '  }. 

An interesting thermodynamic consequence of this dependence P([ ~ }) of the single 
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pressure on the entire set of macroscopic densities is the "macroscopic sound speed" relation 

(~,.)2 aP P/p'(P) 
-- a p '  -- ~ , ~ a a e ~ / a P  ' [1] 

which follows from substitution of the relation p' = ~ ' / 0 "  into the thermodynamic first 
law, de' = (P/(p')2)dp'.  Thus, 

ae . P P aO ~ 
- -  - -  - -  ~ $ c l  

ap  ~ p.p, p" ap  ~ 

which leads to formula [1] via 

a 2 pae a = e a + P 
a~. ~ ~ P" [2] 

upon using g~0 B = 1. Relations [1] and [2] will be found useful for casting the ideal 
multiphase equations into a Hamiltonian form and studying their stability properties. 

The equations of ideal multiphase flow are (see e.g. Stewart & Wendroff 1984) 

a,p' + div p'v' = 0 ,  [3] 

O' 
a,v ~, "k v lv  ~ "  " = - ---p. P,. - qb.,, [4] 

where summation on repeated subscripts is implied (no summation convention is imposed 
on superscript s) and ~b(x) is the potential for an external body force. Equation [3] expresses 
conservation of mass, while [4] determines the motion for each species with drag terms 
between constituents neglected. Using [3], an alternative form of the motion [4] is obtained: 

+ = 

so that, in terms of the species momentum density M '  = -p'v', we have 

= - [s] 

Energy conservation is a consequence of [3] and [4]. Namely, 

~, ~ '  Ivfl 2 + e' + ~b = - div p'v ~ Iv'12 + e'  + ~b + P' J / -  P a0----~at 

Consequently, upon summation on s and use of 2, 0 '  = 1, the following quantity is seen 
to be conserved for species velocities v, tangential to the boundaries of the domain of flow, 

) E = . p ~lv'[ 2 + e  ' + ~ b d ' x ,  [6] 

where d"x is the n-dimensional volume element. Throughout, the dimension of the volume 
element indicates which results are general, and which only apply in certain dimensions. 
The total energy of the system is conserved, provided the velocities v' are tangent to the 
boundary. Likewise, summation over species of the momentum equations [5] implies con- 
servation of those components of the total linear momentum which correspond to directions 
in which ~b is translation invariant. 
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Another  consequence of [3] and [4] is advection of each component  of the specafic 
vorticity t o ' / p  ~ = (curl v0  ( p ' ) - ~  for each species. Using the relation p' = p'(P),  one 
finds from [4] that, with to t = curl W, 

a , v ~ = v ~  × t o ' - X T ( ~ l v ' [  2 + h ' ( P ) + ~ ) ,  [7] 

where h ' (P )  is the specific enthalpy, satisfying 

V h ' ( P )  - 
1 

p,(e) V P .  

Thus, by taking the curl of [7], we get 

a,to ~ = curl(v '  X toO,  [8] 

or, upon using [3] and expanding [8] one finds 

(a, + V'. V )  ~-T = ( P  ' ) - l ( w ~ "  V )v~' [9] 

Equat ion [8] as written is true for a barotropic fluid m three dimensions. In n chmensions, 
the corresponding statement is that the 2-forms dv ' = d(v~dx')  = v ~jdxJ ,,dx' are "frozen 
in", i.e. (0,  + .L~v')dv ' = O, where .LC~v ~ means Lie derivative with respect to the vector 
field v ' in s tandard notation, see e.g. Schutz (1980). In terms of components,  co s = v '  
v j , ,  we find that 

1 
(at 4- .YvOdv  ~ = ~[a, ¢ov~ + (o%,~ - ¢oLaj - OJjka~ ,)v~]dx&dx' = O, [10] 

which becomes [8] upon identifying -to~2 = to~, etc. in three dimensions. 
Hamil tonian formalism. The mare result of this section Is that the equations of 

multiphase dynamics [3] and [5] can be written in the Hamil tonian form a,F = [H, Ft 
with Poisson bracket { , ] gwen for arbi trary functionals Z K of p s, M s by 

= - a ,p '  8M---~ + ~ -p'a,-~p~ + ( a j M f + M j a , )  , [111 

and Hamil tonian H [  p ' ,  M '] given by 

1 L 2p, + + ~ ' 6  ' 
[12] 

which, of course, is the total energy [6]. 
This Hamil tonian formulation can be verified directly, by using the variational deriv- 

atives 

6H 8H 1 P 
8 M '  - v ' ,  , ~ ,  - 2 Iv'l~ + e'  + P' + 'b ,  

where we have used relation [2]. We find, letting J = ~ ' ,  K = H in [11], that  [3] is 
verified; 



HYDRODYNAMICS AND ELECTROHYDRODYNAMICS 

Letting J = M~, K = H in [ll] ,  we find that [5] is verified as well; 

. . . .  . .  a t M [  = [ H , M ; }  ( M , v j ) . j  - -p't~., - -p'a, e ' +  = - ( M ,  u j ) , j  - " p ' ~ . ,  - O" P,,. ~ pq 
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thanks to the first law de ' = -Pd(1 /p ' ) .  
The bracket [11] is a sum over species of N copies of the Poisson bracket for single- 

species, compressible flow which is given together with its mathematical interpretation in 
Holm & Kupershmidt (1983) and was introduced in Iwinski & Turski (1976), Dzyaloshinsky 
& Volovik (1980), and Morrison & Greene (1980). Thus, the Poisson bracket [11] for ideal 
barotropic multiphase flow has the same form as the Poisson bracket for single-phase flow, 
when expressed in terms of the macroscopic mass densities p '  and momentum densities 
M • = -p'v'. 

3 MULTIPHASE ADIABATIC HYDRODYNAMICS 

For multiphase adiabatic flow, each specific internal energy e ~ depends on both 
microscopic mass density p~ and specific entropy ~f through the equation of state e' = 
e'(p',n~). In this case, the first law becomes 

T ' d n ' -  p d ( 1 . ) ,  [I 3] d e ' =  
\ pv  

where T' is the temperature of species s. The constraints ~ ,0 '  = 1 and P ' (phn ' )  = P, 
s = 1, ..., N, impose functional dependences 

P = P(I ~' l . l , r l ) .  o ,  = o'(I ~'}. IT ' ] ) .  [14] 

for given functional relations p' = p'(P, n ~) = ~ / 0 ' .  The expressions [14] for P, 0 '  are 
assumed to be known. As a consequence of [14], one finds from [13] that 

ae s P P aO' ae ~ P aO ~ 
_ - _ s  . . . .  T ~ a  '~ [ 1 5 ]  

ap a p~p, p, ap a an ~ ~ ' a n  o 

These expressions lead to the thermodynamic identities, 

a ~ , e ,  = e  ~ + P  [16] 
ap" p" 

a 
p~e ' = paTa ,  [171 

an" 

upon using Y.,,O' = 1. Identities [16] and [17] will be useful for extending the Hamiltonian 
formulation obtained in the previous section to the case of adiabatic flow. For multiphase 
adiabatic flow, the equations of motion are 

a,p '  + div p~v ' = O, 

a ,n '  + v ' .  ~7~7' = 0 ,  

a , M ~  + {M~'M~I - o . P ,  - -~.~,.. 
~ "~. H = . 

[ 18a] 

[ l S b ]  

[ 1 8 c ]  

where the adiabatic condition requires that specific entropy n '  advects with the flow of 
each species. (Note that those flows are not isentropic, i.e. not constant entropy; rather 
they are adiabatic, i.e. no heat is exchanged across flow lines.) 



672 D D H O L M and n A K U P E R S H M I D T  

A consequence of these equatmns analogous to [9] Is, in three dtmensmns, 

(0, + v ' . V ) W = 0 ,  

where ~q~, given by 

:19t 

f l '  = ( 9 ' )  - ' ~ '  "V ~ ' ,  [201 

is the potential vorticity for material s which is transported by the flow of that speoes 
Conserved quantities associated with "0' and 1"~" are 

F . ,  = f d3x p '  ~'(71 ~, f~0 ,  [21] 

for arbitrary functions ~ of two real variables for which the integrals F¢, exist. Proof that 
the quantitms _Pc, are conserved for velocities tangent to the boundary follows by &rect 
computation using [18a], [18b], and [19], and integrating by parts. In n dimensions, the 
geometrical statement corresponding to [19] is that the 3-form dv'^d~ ~ = - v,jlq.kdx' ' ' ,, dx~ 
,, dx k is frozen into the flow of material s, i.e. (~, + J v  s) (dv s ̂ dW) = 0, where -~v '  Is 
the Lie derivative and ,, denotes exterior product of differential forms. Formulanon of [ 19] 
m terms of Lie derivatwes shows its geometrical meaning. The proof follows by taking the 
exterior denvanve of the motion equation written as 

(0, + J v ' ) v  s + 9 ,  d P + d ~ -  = 0 ,  

where v ~ = v~dx'. Upon usmg [d, -Wv s] = 0 and d 2 = 0 (see e.g. Schutz 1980), the result 
of the exterior denvanve ~s 

(~ + .L~v0dv~ = d P , , d ( ~ 7 ) .  

Then the admbatm equatmns (G + -fv')~q ' = 0 imply that 

(a, + 

where the last equality is a consequence of the functional relation 9" = P'(P, "q0. In three 
dimensions [22] becomes 

0,(o~'-Vn' ) + div [v'(o~'.V~l') ] = 0 ,  

and [ 19] follows upon combining this with the continuity equation for p ' .  
Hamiltonian formalmm. Equations [18] of adiabatic multipbase hydrodynamics can 

be expressed in Hamiltonian form 0 ,F = [H,F] ,  with Poisson bracket given on the space 
of dynamical variables [ p ' ,x/ ' ,M'} by 

[K,J} = -  d"x ~-~o O,p ' -~ .  + - ~  ~,~ SM; 
[23] 

and Hamiltonian H = X ~ H  ~, 

, ~ 2p' + p 'e ' (p ' ,v/ ' )  + p ' ¢  . [23'] 
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The proof proceeds as in section 1 by substituting into the Poisson bracket [23] the variational 
derivatives 

8H 
8M' 

8H 

~H 
8W' 

V s - -  j 

p 
Iv'[ 2 + e" + P" + c~, 

obtainable using the thermodynamic relations [16] and [17]. 
The conserved quantities [21] lie in the kernel of the Poisson bracket [23] in three 

dimensions (that is, they Poisson commute with every functional of the variables [ p ' ,~ ' ,M ~ ]) 
so they will be conserved for any choice of Hamiltonian. See Holm & Kupershmidt (1983), 
for a mathematical interpretation of the Poisson bracket [23]. 

4 A D I A B A T I C  M U L T I P H A S E  E L E C T R O H Y D R O D Y N A M I C S  

Adiabatic multiphase flow of ideal charged fluids creates a current. This current induces 
an electromagnetic field, which self-consistently influences the fluid motion through the 
Lorentz force. In this section, we will show how the self-consistent inclusion of an electro- 
magnetic field alters the Hamiltonian structure for electrically charged adiabatic multiphase 
flows. Let a '  be the charge-to-mass ratio for material s, E, the electric field, and A, the 
magnetic vector potential, related to the magnetic field tensor B,j by 

Bo =A~j -A~,. 

The coupled electromagnetic and fluid equations consist of: dynamical Maxwell equations 
for the electromagnetic fields, conservation laws for mass and entropy of each species, and 
the motion equations for the fluid velocities. The sources for the electromagnetic fields are 
determined by the products of the parameters a '  (which could be zero for some species) 
with the macroscopic mass densities p~. The multiphase plasma (MPP) equations are, upon 
choosing the radiation gauge (a ,A = -E) ,  

X _ 
a , E ,  = - B e /  - a ' p ' v * ,  , 

$ 

a , A ,  = - E ,  , 

0 t p  s _ - - s  s , = ( p v ) j  

a t,l~s s , = - U j ~ , j  , 

1 
. . . . .  -~P + a'(vJBj~ + E,) t V  ~ = UjO , j  , I  

[24] 

These equations are obtained by introducing the multicomponent, single-pressure approx- 
imations into the standard plasma physics model, discussed e.g. in Holm & Kupershmidt 
(19S3). 

The static Maxwell source equation 

EL, = X  a'p" 

is compatible with the flow and will remain satisfied if it is initially true. Just as in adiabatic 
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multtphase hydrodynamics, the constraints Y-,sO' = 1 and Ps(p,,r/,) = p for all s impose 
a known (implicit) dependence 

e = P(I ~sl, In*l), 0, = o'(I ~s}, [ , r l )  

for given functional relations 

p ,  = ps(,o, ~s) _ P' 
0 '  

among the microscopic densities p' ,  macroscopic densities ~s, and volume fractmns 0' .  
Hamiltonian formalism. Setting M '  = -p'v' + a '~ 'A,  the MPP equations [24] can be 

cast into Hamiltonian form a ,F  = {H,F},  with Poisson bracket given on the space of 
dynamical variables { ~' ,  ~7', M ' ,  E,  A} by 

+ 8~; p,o, ~--~p, - n,', ~-z~, + ( a , g t ;  + ~>,) 

+ f d.x{___~_ 8K 8K &l]  

[25] 

and Hamiltonian 

= , i~- S + p'e'(p',r/') + f d"x IEI = + ~ B,jB,, . [261 

The variational derivatives 

8H 
m 8M~ v~, 

8H Ivq: a 'A.v '  + e' + P 
8p'  2 p~ 

8H 
_ ~ s T , ,  8r/' 

8H ~ - 
8A, -- , a'psv~ - B:v' 

8H - -g , ,  
BE, 

readily imply the MPP equauons [24] using [25] and [26]. 
Next, an invertible change of variables 

M~ = M', - a'p*A, = p'v', 

in the Poisson bracket [25], followed by noticing that the resulting bracket involves A, only 
in the combination A ~k - A z, = B,~, leads to a gauge-invariant Poisson bracket in the 



HYDRODYNAMICS AND ELECrROHYDRODYNAMICS 675 

space of magnetic fields plus physical variables 

~ [&l -sBK &l BK &l [-, BK BK 

" &/ a,~-~--  aj + a I 

[27] 

Except for the presence of the macroscopic density ~s instead of the microscopic density 
p', the brackets [25] and [27] have the same form as those in Holm & Kupershmidt (1983) 
for the physically very different system of multifluid plasmas interacting via electromagnetic 
fields and multiple pressures, without imposing the constraint of pressure equilibration. For 
those multifluid plasmas, the bracket [27] in ~3 was found in Iwinski & Turski (1976) and 
rediscovered in Kaufrnan & Spencer (1982). 

To determine additional conservation laws for the MPP system, we first define a 
1-form ~' = (v~ + a~A,)dx '. Then by the MPP equations [24] one finds 

(o, + . ~ v 0 #  * + P' - d  + asv ' . A  = 0 ,  

where .Z'v ' is the Lie derivative with respect to v s. In addition, since (a, + .~vs)d~ ~ = 0, 
we obtain, by proceeding as in section 3, 

( a , +  .~v  s)(d~s^ dT/s) = dP^d(p~)^d~ls = 0 ,  

using ps = ps(p, ~s) in the last equality. Thus, in three dimensions we have a plasma 
analog of [19] for adiabatic fluids; 

(0, + , s .  V ) Q '  = 0 ,  

where 

Os = (os + asn).  

for each species, and B = curl A is the magnetic field vector. 
Associated conserved quantities are 

F.,  = ff d3x O s(, v,  0s) ,  [28] 

for arbitrary functions ~s of two variables. Again, the conserved quantities [28] associated 
with advection of (~s and ~' lie in the kernel of either Poisson bracket [25] or [27]; so they 
will be conserved for any choice of Hamiltonian in these dynamical variables. 

5. LYAPUNOV STABILITY ANALYSIS FOR THE SINGLE-PRESSURE MODEL 

As will be shown below, equilibrium (i.e. steady-state flows) of the multiphase equations 
[18] are extremal points of the sum H~ = H + XsF¢, defined by [21] and [2Y]. Lyapunov 
stability of these equilibrium states can be investigated by studying the conditions for 
definiteness of ~ ZH F, the second variation of H r  evaluated at the equilibrium state. The 
quantity 8ZHr is preserved by the linearized equations, and is the Hamiltonian for the 
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dynamics hneanzed around the equilibnum state (see Arbarbanel et al 1986, appendix C) 
When the equihbnum state satisfies conditions sufficient for th~s second vanatmn to be 
definite in s~gn, then the quantity 8:HF defines a conserved norm, m terms of which the 
hneanzed equations will be Lyapunov stable (that is, when the equilibrium state satisfies 
the conditions required to make 82Hr definite m sign, then m terms of the conserved norm 
82H~, every perturbed state remains in some neighborhood of equihbnum under the il- 
neanzed dynamics). More detailed discussions of how fluid dynamical stabihty results are 
obtainable by Lyapunov's method in the context of the Hamlltonian formahsm appear m, 
e.g. Arnold (1965; 1969), Holm et al. (1983), Holm (1984), Holm et a/ (1985). and 
Abarbanel et al. (1984, 1986) 

Here we show that dependence of the common pressure P on the ennre set of macro- 
scoplc densmes I P '  l causes the second variation 82Hr to be indefinite in sign and, thus, 
prevents lineanzed Lyapunov stabihty from being establishable in the wcmlty of the sta- 
nonary flows that are equilibrium states of Hp. This result ~s consistent with the 111 posedness 
of the single-pressure mulUphase equations m one dunension, as discussed m Stewart & 
Wendroff (1984) and references thereto. 

For s~mphc~ty, we consider two-dimenmonal, barotropic, multiphase flow m the x - y  
plane. Calculations which are more complicated, but completely analogous to those to be 
dlustrated are also possible for the other muluphase flows considered m this paper. For 
equihbrium planar barotropm flows ~ ,  v~, we have 

dlvp~v~ = 0 ,  [29] 

v~ • = 0 ,  [30al  

v ~ - V  (~vel 2 + h ' (P , )  + 4~ = 0 ,  [30b] 

with co~ = i .curl  v~, where i is the unlt vector normal to the plane. The relanon [30b] 
follows, upon scalar multiplication by v:, from the equilibrium relation 

v~ x ico~ : V Iv£l 2 + h*(P,) + qb . [31] 

For both sets of relations [30a] and [30b] to hold in the plane, it suffices that there exist 
functions K '  for whmh 

bYe't2 + h'(P,)  + ~ = K" a~(.__~',.) 
T \p:.: ' [321 

provided v: and co: are nonzero throughout the domain of flow considered. Then, taking 
the vector product of [31] with i using [32] leads to 

p~v' - K (to,_/.p~) ~. × V , [33] 
e s - - $  

o J , / P e  

where prime m K ' '  refers to the derivative of * ' -* K (o , /pe)  with respect to the indicated 
argument. If, further (~7 (co~/~) vanishes nowhere in the domain considered, then one easily 
sees that 

K"(oJ'~/-p',) -p~,v',. i X XToJ~,/-p*, 
(o~/F~ - -  ~q7 ra~/F~I 2 ' [34] 

$ m S upon scalar multiplying [33] by the quantity i × ~7(oJ,/p,). 
We now show that the first variation 

8Hr  :=  2 DHr(p; ,v~) .  (Sp', By') [35] 
3 
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vamshes for equilibrium flows p~, v~, taking place in a domain D of the x-y  plane with 
boundary conditions v s.fi = 0, where fi is the unit vector normal to the boundary aD. 
From [21] and [23'] we have 

:so E; - (°')]"'- H ,  = , dxdy Esl,,l  + p ' e ' ( p 0  + ps~b + p ~s 

+ ~ X ' f  d x d y c o ' ,  [36] 
$ 

where k ~ is a constant multiplying a term separated from <I~ for convenience later in [39]. 
Using [2] and integrating by parts in [36] gives the expression 

:so ° )  6 H r  = dxdy Iv~[ 2 + e'  + - - - I -  ~ + _ __ ~,s [37] 

- ~ -  xV~7 . a v '  

The first variation 6He  thus vanishes for equilibrium flows, provided the functions @ 
satisfy the relations needed for each coefficient in [37] to vanish, 

in the interior of domain D, and 

Xs .+. ~,s[m'-~t°l Z_..~,I 
= 0 [39]  

~P~/ 

on the boundary aD. The latter condition [39] is easily satisfied, since , -s  • toe/p, is a constant 
on the boundary by [30] and the boundary condition v',.fi = 0. For both conditions in 
[38] to be satisfied, it suffices that 

o:  = _ ~ s  + ___ tb, s , 
~p~,/ ~p'/ p: \psi 

[4o] 

so that the first relation in [38] holds. As a consequence, then 

° :  E ,1 

and the second relation in [38] is satisfied by virtue of [33] for steady flows. Therefore, HF 
in [36] has a critical point for stationary flows, where the function tb, is determined by 
[40] to be 

~ s ( q )  = q - 7  d r  + c o n s t  . [42] 

The second variation of H~- evaluated at equilibrium, 

82Hp ---- D2Hp(p',, v : ) .  (Sp', 8vs) 2 , [43] 
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Is gwen by 

• 2 

+ = 8-~') ~ + 8 

1 Iv~t 2 } 
+ - 8&({  ~°  })8~" - _ (8~,)~ [441 

P~ P~ 

If this expressmn could be made positive defimte, the resulting conclusmn would be that 
the linearized equatmns at equilibrium ~ ,  v~ were Lyapunov stable in the preserved norm 
~ 2 H  F. In the single-species case, this would requ|re (cf. Holm et al. 1983) 

qb,(w,t,, = p , v , . 2  × ~ o ~ , / p ,  

\PeY IV(o~,/p,)I ~ 
> 0 ,  

which is a compressible versmn of Raylelgh's reflect|on point criterion for stability (see e.g. 
Dramn & Reid 1981), and the cond{tion 

~Ld-77P~ !v'12 > 0 ,  
[45] 

whmh is the condltmn that the equilibrium flow be everywhere subsomc. However, for a 
multiphase flow one finds (cf. [1]) 

B = I  
[46] 

since the equ|libnum pressure ~s a function of the entire set of macroscopic densmes. 
Therefore, although 82Hr is preserved by the linearized equations for multiphase flows, its 
preservation does not Imply Lyapunov stability even for planar flows without inflection 
points, since 82Hr is not definite in sign for such multiphase flows. The cause of th{s 
indefiniteness is the dependence of the common pressure at equilibrium P ,  on the entire 
set of macroscopic densities [ ~s}. Thus, the constraint of common, instantaneously equ|- 
librated pressures causes a difficulty, which we believe is unphysical (some equilibria must 
be stable!). This difficulty can be circumvented and Lyapunov stability obtained by for- 
mulating a very different multlpressure theory of multiphase flows, as is discussed m the 
compamon paper (Holm & Kupershmidt 1986). 

6 CONCLUSION 

We have presented Poisson brackets for multiphase hydrodynamics and electrohydro- 
dynamms of 1deal fluids and plasmas. In terms of macroscopic mass densiues and momentum 
densities, these Potsson brackets have the same form, and retain the same mathematical 
structure as for the corresponding single-phase fluids. The kernels of these Poisson brackets 
give conservation laws that are independent of the choice of Hamiltonian for a pamcular 
theory. Equilibrium multiphase flows have been shown to be critical points of HF, the 
energy constrained by these additional conservation laws. Linearized Lyapunov stability 
analyses of multlphase flmds have been given within the Hamiltonian context Although 
the second variation 82HF of the constrained energy HF is preserved by the lineanzed 
multlphase equanons, no corresponding stability result can be concluded for the single- 
pressure mulnphase case, since the dependence there of the pressure on all of the macroscopic 
densmes causes 8"He to be indefinite in sign and, thus, not a stability norm. This difficulty 
can be resolved within the Hamiltoman framework by introducing multiple pressures, as 
is discussed in the compamon paper (Holm & Kupershmidt 1986). 
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